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DYNAMICS OF TWO SLOWLY ROTATING POINT-MASS VEHICLES
CONNECTED BY A MASSLESS TETHER AND
IN A CIRCULAR ORBIT

By William M., Adams, Jr.
Langley Research Center

SUMMARY

A study has been made of the dynamics of two point masses in circular orbit con-
nected by a massless tether and rotating relative to the local vertical with angular rates
of the same order of magnitude as the orbital angular velocity. Only motion in the orbital
plane is considered. Equations of motion are developed which specify the behavior of the
system during periods when the tether is in tension and slack. Results that allow predic-
tion of the occurrence of a slack tether are obtained. It is also shown that the addition of
damping, coupled with oscillations between a slack and taut tether, causes the system to
seek closer alinement with the local vertical.

INTRODUCTION

Use has been made of a tether in Gemini flights for extravehicular maneuvers and
as a means of providing artificial gravity. The tethered configuration (fig. 1) has also
been proposed as a means of station keeping. (See ref. 1.) The characteristics of the
motion of tethered bodies have been the subject of several theoretical studies in recent
years. (See refs. 2 and 3.) These studies considered systems that were spinning with
angular rates that were much larger than the orbital angular velocity.

If the system is spinning relative to the local vertical with an angular rate that is of
the same order of magnitude as the orbital angular velocity, the gravity gradient between
the two masses has a pronounced effect upon the dynamics of the system. This study is
an analysis of the behavior of such a configuration.

Several simplifying assumptions are made in carrying out the study. The vehicles
are taken to be point masses constrained to the orbital plane of the center of mass which
is assumed to be in a circular orbit about the earth. Additional assumptions are that the
tether is massless and can be characterized by a force constant, and any damping present
in the system is viscous.



Equations of motions are developed which specify the behavior of the system during
periods when the tether is in tension and slack. Results which allow prediction of the
occurrence of slackness in the tether are presented. The study also shows that if damping
is present and oscillations between a slack and taut tether occur, the motion of the masses
relative to their center of mass is affected in such a way that the system becomes more
nearly alined with the local vertical and no further slackness occurs. This result is
desirable if gravity-gradient stabilization is an objective.

SYMBOLS
D viscous damping coefficient
F elliptic integral of first kind
h unit vector normal to orbital plane in direction of orbital angular momentum
I moment of inertia of taut system about its center of mass, mlllz + m2222
‘f,f ,f; right-handed set of unit vectors in direction of local horizontal, local vertical,

and normal to orbital plane of center of mass, respectively (see fig. 4)

K constant depending upon initial conditions (defined in eq. (8))

k spring constant of tether

L Lagrangian

l unstretched length of tether

il unstretched lengths of tether from center of mass to mj; and mo
mj,my masses at end of tether

n=r-1»

P period of oscillation of a simple spring assuming viscous damping
R vector from center of earth to center of mass
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Subscripts:
B

E

vectors from center of earthto mj; and mg

vectors from center of mass to my and my

tension in tether

time

unit vectors in radial and tangential directions, respectively
inertial velocity of center of mass

inertial velocities of mq; and mg

velocities of my and mgy relative to center of mass

components in {,f ,ﬁ -IdirectiOns

fraction of radial velocity remaining after a slack-taut-slack transition
angle between reference line in orbital plane and local vertical

product of universal gravitational constant and mass of earth

angle between local vertical and T

3

K i
i)

angle defined as sin~1 sin ¢

bound upon angular oscillation

- at an extremum



I with respect to inertial space

s value of quantity when tether becomes slack

T value of a quantity when tether reaches full extension after having been slack
o at initial time

1,2 refers to masses m; and mg, respectively

r,o in radial and tangential directions, respectively

Dots over symbols denote derivatives with respect to time. A bar over a symbol
denotes a vector whereas a caret over a symbol denotes a unit vector. When a vector
quantity is written without a bar, the magnitude of the quantity is denoted.

THEORY AND ANALYSIS

Sets of equations are developed that specify the motion of the tethered system during
periods when the tether is slack and taut, and a method for predicting whether an initially
taut tether will become slack is derived.

Dynamics of the System During Taut Tether Periods

Consider the system shown in figure 1. Two point masses are connected by a mass-
less tether and their center of mass is moving in a circular orbit with constant orbital
angular velocity of magnitude 8. The tethered system is rotating (in the orbital plane)
relative to the local vertical with angular rate .

The equations of motion of the system are obtained by using the Lagrangian approach
with the separation of the two masses r and the angle from the local vertical to the line
connecting the masses ¢ serving as generalized coordinates. The Lagrangian is defined
as

L = Kinetic energy - Potential energy

and the equations of motion are given by

and
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where D is a viscous damping coefficient that is assumed to characterize the damping
present in the system.

The Lagrangian may be written as
v g (gl (B e e ez o

In this expression (?1)1 and (?2)1 are the velocities of m; and mg relative to

inertial space, Ry and Rg are the distancesto mj; and mg from the center of the
earth, ! is the unstretched length of the tether, p is the universal gravitational con-
stant times the mass of the earth, and k is the tether force constant. The quantities
Ry, Ry, Vp,and Vg may be writtenintermsof R, r, V, v, /,and ¢ as

— ) 2
]
R1=\/;Et2+r12+2r1Rcos¢'=JR +(—Zl) r2+26—l)rR cos @

2
— \2
2 4 r.2 2, Z 2
Rg = +Trg® - 2rgR cos ¢ = R r 2 2rR cos ¢

7, - éh

X(E+F1)+\71=(GRsmgo+—rUr+l:éRCOS(p+—-I'(9+(p):|iI

- z - i

- . T = (2 . 9 . . by 4.

Vg = 9h><(R+r2)+v2 -(BR sin ¢ - ";:'r)Ur"' |:9R cos ¢ - Z—r(e +(p)}U¢,

In these equations, 6h is the constant orbital angular velocity of the center of mass, R
is the radius from the center of the earth to the center of mass, U, is a unit vector from
mgy toward mg, and Uy, is a unit vector defined as U ¢ = h x er. Substitution of equa-

tion (3) into equations (1) and (2) yields the equations of motion of the tethered system:

r2{ + 2ri(6 + @) + %rzézsin 20=0 (4)

72 .
T+ D L1+ 162 - 362r cos2g - r(6 + qo)z kl ==—(r-9=0 (rz? (5)



where I= mlzlz + mzlzz. The assumptions made in deriving these equations were
the following:

(1) The center of mass remains in a stationary circular orbit

(2) The massless tether can be represented by a force constant, and any damping
present is viscous

(3) In the expansion of (RI/R)'3 and (RZ/R)'3, terms involving (r/R) raised to
powers higher than 1 can be neglected.

The tension in the tether produced by the gravity gradient and the slow angular rates
under study corresponds to extension of the tether that is insignificant relative to the
tether length, and the tether can be regarded as of constant length. Under this condition,
equations (4) and (5) simplify further to

$=-3 §2sin 2¢ (6a)

0o e

T=Kk(r-1)= —%—[(9 + qb)z - éz(l -3 coszqoz.] (T z0) (6b)

This simplification is not valid, in general, immediately following the period when the
tether again becomes fully extended after having been slack; in such cases the relative
velocity between the two masses can produce tension that is considerably higher than that
produced by the gravity gradient and the slow rotational rate. Analysis of the stretching
motion during such a period will be presented in a later section of the paper.

Equation (6a) specifies the angular acceleration of the tethered system about its
center of mass produced by torque resulting from the gravity gradient between the two
masses. Solution of this equation specifies the angular orientation relative to the local
vertical at arbitrary times. The expression

& =~ 3 62sin 2¢

B3|

may be integrated once to yield
@2 = éz(K + g—cos 2@) (M

where K is a constant depending upon the initial angular velocity and orientation and
clearly obeys the inequality

.22
_[%) _3 5 13
K(_) * peoRing= =g #)



By disregarding for the moment the possibility that the tether may lose tension
and examining equations (6a) and (7), several statements can be made regarding the rigid-
body motion. These statements are summarized as a function of the parameter K in
table I.

TABLE I.- TYPES OF MOTION WHEN TENSION MAINTAINED

Value of K Type of motion

- g- System remains alined with local vertical

System oscillates relative to local vertical with amplitudes

-%<K<% K+ K+3
: -sin-1 3= ¢ Ssin” 5

3 System approaches local horizontal and requires infinite time
2 to get there
> -23: System makes complete revolutions relative to local vertical

It should be emphasized that table I is applicable for the tethered system only while ten-
sion is maintained and must be modified somewhat to account for the occurrence of a
slack tether.

Equation (7) may be integrated in closed form in terms of elliptic integrals of the
first kind. The exact form of the result will depend upon the value of K.

The closed-form expressions are derived for the following cases:

CaseI.-K:—g— (0 =0,m; @ = ¢ =0)

3 3
Case 1T, 2<K<2

Case ITI.- K =

[T T

Case IV.- K >

For case I for which K = - %, inspection of equation (6a) reveals that the system

tends to maintain this orientation because any small angular rate produced by an external
source will be opposed by the torque created by the gravity gradient with resulting oscil-
lations about the local vertical as seen in case II.



For case II where - g— <K< g—, by substituting the relation

3

sin Y =
¥ K+%

sin ¢

into equation (7) one obtains for the time elapsed during the rotation of the system from

K+% +%
siny | to ¢ = sin-1

o= sin'l 3

sin ¥,

sin2y

At=_L7§w dy
\lgg wo/ K-I-g-
i <

[T

: K+% K +
» Y - F ,4/0

=—|F
‘/gé 3 3

where F is an elliptic integral of the first kind. This equation reveals that oscillations
relative to the local vertical occur provided the tether is taut. The amplitude of the oscil-
lations is

3 3
+ K+5%
-sin-1 ) S = sin-1 2
3 3
For case IIIl where K= %, the integral becomes

1 (Y _do 1
At = = —==[F(1,0) - F(1,
B8V g, ©O° ¢ il 2 - F(Loo]

1, tan ¢ + sec @
=
V36 “8etan @o + S€C Qg

In this case an infinite amount of time would be required for the system to rotate from a
particular orientation to ¢ = 7/2 or -7/2. Also it can be seen from equation (6a) that if
the system were at rest at ¢ = +7/2, it would tend to diverge from this point since any



angular rate relative to the local vertical created by an external torque would lead to com-
plete revolutions of the bodies about the local vertical as is shown in the following case.

For case IV, K> % As can be seen from equation (7), rigid body motion is one of

complete revolutions relative to the local vertical. The integral of equation (7) is

At =

Since each of these integrals expresses the orientation of the tethered system as a
function of time only if the tether is taut, it is necessary to examine the expression for
tension to determine when the tether may become slack. Substitution of equation (7) into
equation (6b) yields the following expression for the tension in the tether:

T=%é2(1{+%-3sin2q012’/ll(+%—3sin2cp+3cosij (9)

By finding the angular orientation at which T is minimum as a function of K and
evaluating T at that point, one can determine whether slackness will occur. The

extrema can be found by solving for the roots of g—T Forming this derivative gives
@
-1/2
33; -61 1 62sin ¢ cos (p|:2 + (K + % -3 sin2¢.) /} (10)

Therefore g—z—o if 2 =0, 7/2, 7w, 37/2. In addition %:O if @ <0 provided

-1/2
2-(K+%—3sin2(pE) / =0

The latter condition can only be satisfied for a certain range of initial conditions, that is,
for a certain range of K. This statement is true because of the restriction that

lsm @ l = EIS 15— =1 and real. These restrictions can be written in terms of K as

IIJ’\
II.|'\

-3
4

NI



where the positive limit requires Isin (pE, =1 and the negative limit requires that
sin ¢g be real.

It is necessary to determine whether these extrema are maxima, minima, or

2 2
neither. I Q——Tz— evaluated at ¢ = ¢ is negative, T is maximum; if % is posi-
do do

tiveat ¢ = P T is minimum. Upon applying this test, the results given in table II
are obtained.

TABLE II.- ORIENTATIONS AT WHICH TENSION IS EXTREMAL

YR Type of extremum
in-1{3 K+ 5| ¢ ] 7 is minimi
sin [i 3+12J, @Eco, 4«:K‘c4 T is minimized

0, m g'oE>0 T is maximized
0,7 ¢p <0 - 2<K T is maximized
: g s B 2 is minimi
0, m; (pE<O, 2<K< i T 1is minimized
T 3—“-49 >0; K>3 T is minimized
222’ "E ’ 2
T3m s, <0 K>1 T is minimized
2’2'"E 5 4
L3, <0;3<k<? T is maximized
2’2’ 7E ' 2 4

Figures 2(a) and 2(b) present the normalized tension as a function of the angle from
the local vertical for several values of the parameter K. It is seen that the tether
11

remains in tension if K< 1,if K> % for ¢ positive, or if K > 5 for ¢ negative.

Note the consistency between figures 2(a) and 2(b) and table II as to the type of extrema.
When tension is negative, the curves are dotted to emphasize that such portions of the
curves do not represent the dynamics of the tethered system.

The angle at which the tension becomes zero as a function of K is shown in fig-
ures 3(a) and 3(b) for ¢ o <0 and é’o > 0, respectively. The results from this figure
can be used to modify table I as shown in table III.

10



TABLE III.- MODIFICATION OF TABLE I TO DENOTE CONDITIONS
FOR OCCURRENCE OF SLACKNESS

Value of K Type of motion (limited to orbital plane)

K=-3 System remains alined with local vertical and in tension

System oscillates relative to local vertical with tension

-3<Kk=1 K+3 K+§
being maintained, -sin-1 —5—/%e < sin~1 3
1<K é% Slackness occurs in tether
K>3 550 Complete revolutions relative to local vertical occur
> = >
Bs' with tension bemg maintained
%< K< -15-1—, @ <0 Slackness occurs in tether
K 11 0 Complete revolutions occur relative to local vertical
7 | < s =
2 ¢ with tension being maintained

Slack Tether Period

If the tether is initially slack or becomes slack during rotation, the two masses will
(again neglecting the effect of the tether) move independently of each other as long as their
separation is less than the length of the tether. An outline of the development of the equa-
tions of motion as given in appendixes A and B of reference 4 is presented.

Consider the system as shown in figure 4. The Lagrangian associated with m,; is
given by

L =% (V1) (\71)1 +“Rn;1 (11)

The x-component of the equations of motion is
L oL
% —1). a__l =0 (12)
3X1 X1
with identical equations for y, and z;. Performing the indicated operations and making

use of the property that the orbital angular momentum is constant yields the equations of
motion relative to the center of mass:

11



5 : 5 3 . HX B
Xy - X192 = 2Y19 - Y19+R—;=0

1
u(y +R)

- 02 - . - :_L 1
Y1 - V10° 4+ 20 + X400 - —5 + —————=0 (13)
1 1 1 1 R2 R13

z
21+M_;=0

Ry )

Specializing to the case for which the two masses are in the plane of the circular orbit of
1/2
the center of mass, expanding Ry = [X12 + (R + yl)z:l in a binomial series, and

retaining only first-order terms in x; and y; results in the following set of differen-
tial equations:

These approximate equations may be immediately integrated to yield the position and
velocity of my relative to the center of mass:

5‘ ; 2v1) )
x1=2|-3(vy)_+ Z(él)s sin[s(t - ts)] — 2 cos|i(t - ts)]
5 3[(5(;)5 - Z(yl)Jé(t - tg) +(x1)_+ 2(3;1)5 > (14)
yq = {'S(Yl)s + @& cos|d(t - tS)]+(y;)s,sinE9'(t - t)] - 2 (x;)s - ),

The equations specifying the position of mg are identical in form to these equations.
Thus, equations depicting the motion of the two masses during the slack tether period

have been presented.

Behavior During Slack-Taut-Slack Transitions

After a period of time the slack tether will again become fully extended, and relative
motion between the two bodies in the radial direction will not, in general, be zero. The

12



resulting tension in the tether can be considerably higher than that produced by the gravity
gradient between the two masses, and the assumption that the length of the tether remains
constant should no longer be made. One must consider, therefore, the more complete
radial equation of motion (eq. (5)):

. 2. . . . 2
r+DZI—r+r92-392rc05240-I‘(9+<P)2+k21—(r-l)=0 rzy

By making the substitution n =r - [, this expression becomes

n+D %-2-1'1 + { 312 (6 + 40)2 - 92(1 -3 cos?-go]} Ke + (9 - 62(1 -3 coszqo):l

For the low angular rates considered in this study k—l- >> (6 + gb)z - 62(1 - 3 cos2¢p).
Thus,

" 2 2
n+9{—n k- n—l:(é+<92-92(1-30032€0):[ ZI—ZT (15)

The term to the right of the equality is the effect of the gravity gradient and the angular
rotation upon the extensional motion of the tether. Since the effect of this term upon the
tether length was neglected in the earlier analysis, it will also be neglected here. Then
the equation of motion becomes a linear homogeneous differential equation with constant
coefficients:

i 2 2
L ki
n+D %Y =2 _n=20
+ In+ I n

and has the solution

n=

Dl t-ty) Sm[ 3

21
hpe D2}
2 2,2 I (k _Tz)(t i) e
i D2;
I'(k T )

where ilT is the relative velocity between the two masses at the time the tether becomes
fully extended after having been slack tp.

The amount of damping required to remove a specified fraction of the relative veloc-
ity between the two masses during each slack-taut-slack transition may be determined
from equation (16). Let the relations

#(2) = -en (0=es1)

13



and

P =
o(z)=rm -0
specify the desired conditions at the end of each damping cycle where

27

2, - Dzlz)
I‘( 41

Solving for the ratio of damping required to critical damping yields

[ (10g.e)? .

5 ‘/% i ‘/ [72 + (togee)?]

The percent of critical damping required as a function of e¢ as determined from equa-

P =

tion (17) is shown in figure 5.

When initial conditions are such that the tether becomes slack, the motion is made
up of periods of slackness alternating with short periods of tautness when the tether again
becomes fully extended. A typical time history of the motion during the first slack period
is presented in figure 6 for a case in which the center of mass is in synchronous orbit
about the earth. It is evident from figure 6 that the relative velocity between the two
masses is not zero when the tether again becomes fully extended and this condition results
in a short period of tautness followed by another period of slackness.

After a series of alternations, with damping in the system, the relative velocity
between the two masses at full extension essentially vanishes and the system again behaves
as a rigid body. The number of alternations before this condition is reached can vary
from 5 or 10 to more than a hundred depending upon the damping present and the initial
conditions. The subsequent rigid-body motion can then persist indefinitely or slackness
can recur depending upon the angular rate and orientation of the system when it becomes

taut.

A computer program was written that describes the dynamics of the system in order
to determine whether the final motion would be bounded rigid-body oscillations relative to
the local vertical. Two tethered 930-kilogram masses were taken to be in a circular syn-
chronous orbit, and solutions were obtained that covered the entire range of initial condi-
tions for which slackness would occur. Time histories were computed with K, the
parameter which defines the initial conditions, chosen at increments of 0.025. Other fac-
tors varied were damping (2 to 7 percent of critical damping), tether length (2500 and

14



10 000 meters), and the extensional rigidity (333 = ki = 5540 newtons) of the tether.
Cases in which slackness did not occur and tumbling continued were not studied.

The results of this analysis are shown in figures 7(a), 7(b), and T(c). The ordinate
is the final amplitude of oscillation of the system relative to the local vertical; the
abscissa K, defines the initial conditions when coupled with the requirement that
(‘bo < 0. By reference to figures 2(a) and 2(b), it is determined that the values of K,
in figure 7 correspond to large-amplitude oscillations or complete revolutions relative
to the local vertical. The dashed line in the figures is the angular bound below which
tension is maintained and above which slackness occurs for bounded oscillations and cor-
responds to the curve K =1 in figure 2(a). With the exception of the absence of curves
near K, = 5.5 the figures show that the final steady-state condition is one involving
bounded oscillations and no further slackness. (Final tension is instantaneously zero for
cases with K, near 1)

Increased damping tends to smooth out the curves and generally leads to a smaller
final amplitude of oscillation relative to the local vertical. Comparison of figures 7(a)
and 7(b) indicates that the final amplitude of oscillation is insensitive to changes in the
tether length over the range of variations studied. Comparison of figures 7(b) and 7(c)
shows that the same statement is true for variation in the extensional rigidity of the
tether.

No points are plotted in the vicinity of K, = 5.5 because the system remained in
such a condition that slackness would recur indefinitely. In all other cases studied, how-
ever, the final condition is one in which the system is closer to being alined with the local
vertical than initially and no further slackness occurs. A more complete analysis con-
sidering the extensional motion produced (when the tether is in tension) by the slow vari-
ations in the gravity gradient and angular rate could show enhancement of this tendency
toward gravity gradient stabilization.

It is of interest to observe the separation between the point masses during the slack
periods to determine whether collisions between finite-sized vehicles might occur. The
separation between masses for ¢ =0.90 and a 10 000-meter tether having a spring con-
stant of 0.534 N/m was observed from the point of initial slackness until the rigid body
mode was again reached, no further slackness occurring,for a range of initial values of
K. The results, shown in table IV, are the number of times the separation was observed
to be less than each indicated distance for a sample rate normalized to one observation
every 8 minutes. The separation became less than 10 percent of the tether length for a
number of cases. However, in no instance did the separation become as small as 1 per-
cent of the tether length. Table IV was generated under the assumption that the relative
velocity between masses was zero at the point of initial slackness.

15



TABLE IV.- NUMBER OF TIMES SEPARATION WAS
LESS THAN THE INDICATED DISTANCES
[Z = 10 000 meters]

Number of times separation
K, was less than r/I of —
1.0 0.5 0.1 0.01
1.40 203 0 0 0
1.47 225 0 0 0
1.60 274 0 0 0
1.70 339 0 0 0
1.80 360 14 0 0
1.90 438 21 0 0
2.00 407 27 0 0
2.10 496 61 7 0
2.20 541 88 0 0
2.30 573 97 8 0
2.40 546 43 0 0
2.50 871 122 0 0
2.75 535 78 0 0
3.00 566 82 4 0
3.25 670 116 0 0
3.50 785 124 5 0
3.75 729 89 9 0
4,00 632 127 4 0
4.50 756 107 8 0

CONCLUDING REMARKS

Equations have been developed for a tethered system for the idealized case of a
massless tether that allow prediction of the occurrence of slackness; furthermore, it is
shown that the addition of damping, coupled with the occurrence of slackness, affects the
motion of the masses relative to their center of mass in such a way that the system
becomes more nearly alined with the local vertical and no further slackness occurs.

In addition, the minimum separation between masses was greater than 1 percent of
the tether length for all cases having zero relative velocity between masses at the
point of initial slackness. A more complete analysis considering the slight exten-
sional motion produced by the variation in the gradient and angular rate occurring

16



while the system is in tension could show enhancement of the tendency toward gravity-
gradient stabilization.

It should be pointed out that the assumption of a massless tether removes the effect
of lateral cable oscillations; and it is under the conditions of low tension (slow rotation
rates) that were studied that the amplitude of these oscillations can become large.
Although minimization of the effect of these lateral oscillations could be accomplished
by making the tether of light material, it is felt that the results presented in this report
should be considered as qualitative in nature.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., August 13, 1969.
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(a) Bounded oscillations.

Figure 2.- Normalized tension as a function of angle from local vertical for specified values of K. The dashed portions of the curves
depict the motion of a rigid body under compression and do not, therefore, represent the motion of the tethered system.
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Figure 3.- Angle from local vertical at which the tension becomes zero as a function of the parameter K.
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Figure 4.- Location of mj and mp as seen from their center of mass in a coordinate system rotating with the ortital angular velocity.
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Figure 5.- Percent of the critical damping required to reduce the relative velocity between the two masses to fraction e of its original value
in one slack-taut-slack transition.
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Figure 7.- Angular bound of oscillations of final configuration as a function of Kp where slackness occurred in the initial damped system.
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Figure 7.- Continued.
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